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a b s t r a c t

The problem of heat transport during sub-cooling below k point in long, narrow channels containing
superconductors immersed in liquid helium is discussed. In order to describe the propagation of phase
transformation front the travelling plane wave description with suitable change of variables has been
adopted. Nonlinear temperature profile corresponding to the conductivity function in He II has been
assumed. The heat diffusion equation is solved in the volume of He I with the assumption that the main
contribution to the specific heat is due to helium and the main contribution to longitudinal conduction is
due to superconductor. For one dimensional problem with the temperatures clamped at both extremities
of the channel the closed form analytical solutions for temperature profile are obtained. Channels with
discontinuity in diameter are also analysed. Experimental validation of the model is based on 54 m long
superconducting lines applied in the Large Hadron Collider (LHC).

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction: cable-in-conduit problem

The problem of heat transport in long, narrow channels contain-
ing superconductors and filled with superfluid helium has recently
gained a lot of interest in view of applications in modern scientific
instruments. As the superconducting particle accelerators cooled
by means of liquid helium reached the temperatures below lambda
point [1], the rate of the He I–He II phase transformation process
becomes of primary importance both for standard cool-down and
for quench recovery.

Modelling He I–He II phase transition can be carried out either
in the framework of condensation mechanism characteristic of
ideal Bose–Einstein gas or in the framework of macroscopic two-
fluid system proposed by Tisza [2]. In the light of Tisza theory of
liquid helium, He II in the temperature range above 1 K and below
Tk forms a mixture of normal component and a superfluid compo-
nent. The macroscopic thermo-hydrodynamic properties of such
two-fluid system have been shown to stay in good agreement with
experiment. The thermodynamics of two-fluid model of He II has
been further developed by Gorter [3] who has shown that the mod-
el requires specific expressions for Gibbs potential of the liquid.
Thanks to this macroscopic two-fluid framework the mass and
heat transport in He II can be quantitatively described by means
of equations similar to classical liquids.
ll rights reserved.

zeń).
In the present paper the so-called superconducting lines in the
form of long narrow channels containing superconductors and
filled initially with liquid helium at a temperature above Tk are
analysed. Often, such superconducting lines are housed in the con-
tinuous cryostat, parallel to main cold mass (sequence of supercon-
ducting magnets) and are connected to the source of He II at one
extremity [1]. The process of He I–He II phase transition in such
channels takes the form of propagation of the so-called lambda
front (initiated close to the source of He II), which is a substantial
simplification of the real heat transport of quantum nature in tur-
bulent helium. Nevertheless, such simplified 1D model allows
already a quantitative analysis of sub-cooling time of the channel.
The process of cool-down below Tk in long narrow configuration
may be substantially delayed with respect to main cold-mass
(magnets), due to much smaller active cross-section of He II avail-
able usually at one extremity of the channel. Therefore analysis of
the subcooling rate as well as of the temperature profile in the
channel turns out fundamental for safe powering of superconduc-
tors in the line.

The rate of He I–He II phase transformation in long narrow
channels has been investigated by Dresner [4] with the aim of
obtaining the closed form solutions. The model is based on concen-
tric configuration of copper cable located in the axis of long narrow
channel and filled with He I and He II, separated by lambda front
propagating at a variable rate. A simplified assumption of linear
temperature profile in He II has been made. Moreover, the author
assumed that the main contribution to the specific heat is due to
helium and the main contribution to longitudinal conduction is
due to copper. Also, the heat transport in radial direction has been
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Fig. 1. Tube filled with liquid helium.

Fig. 2. Superfluid helium heat conductivity function at 1,3 bar [14].
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neglected. Thus, the model has been reduced to its one-dimen-
sional form. With the assumption of Gorter-Mellink equation for
superfluid helium:

_q ¼ f ðTÞdT
dx

� �1
3

ð1Þ

where f ðTÞ denotes the heat conductivity function, the following
solution for the lambda front propagation rate has been derived:

v ¼ ½f ðTÞDTHe II�
1
3

CHe IDTHe Ix
1
3
k

ð2Þ

where CHe I denotes the specific heat, DTHe I;DTHe II denote the tem-
perature increments in He I and in He II, respectively, and xk is the
current distance of lambda front from the beginning of the chan-
nel. It is worth pointing out that the temperature has been fixed at
both extremities of the channel (clamped temperature problem).
The solution—even if simplified—indicates that the propagation
rate is inversely proportional to the current position of lambda
front to the power of 1/3. This means that in the case of infinite
channel the phase transformation rate tends to zero. Similar
model has been applied by Kowalczyk et al. [5] to the process of
subcooling of a superconducting line, used to power the corrector
magnets in the Large Hadron Collider (LHC). Further development
of this model backed by some experimental results is due to Capa-
tina et al. [6]. Quite similar problem of temperature profiles due to
pulsed-source problem has been investigated by Lottin and Van
Sciver [7]. Another model of recovery from burnout has been
developed by Seyfert et al. [8]. Much more sophisticated model
of heat and mass transport in two-phase He II/vapour has been de-
rived by Van Sciver [9]. Helium flow in the channel has been as-
sumed one-dimensional and stratified. Mass exchange between
both phases has been allowed. Temperature profiles and the va-
pour mass flow rate have been obtained by the author. Numerical
simulation of the He II–He I phase transition in the ‘‘cable-in-con-
duit” conductor (CICC) has been performed by Mao et al. [10]. One
dimensional heat conduction in the longitudinal direction has
been assumed. Initially static He II bath combined with negligible
transport of mass during the phase transition has been accounted
for. The enthalpy method and the moving grid method have been
adopted in order to solve the Stefan problem. A combination of
method of lines and forward Euler scheme has been used to solve
the ordinary differential equations. The evolution of helium tem-
perature accompanied by the He II–He I phase transition provoked
by the AC losses and index heating have been successfully simu-
lated. Also, a trajectory of the He II–He I travelling front has been
tracked by means of the moving grid method.

The present paper constitutes further step in the direction of
obtaining temperature profiles in long channels sub-cooled below
Tk and containing superconductors immersed in liquid helium. In
order to describe the propagation of phase transformation front
(lambda front) the travelling plane wave description with suitable
change of variables has been adopted. Temperature profiles on
either side of phase transformation front have been derived. In par-
ticular, nonlinear temperature profile in He II corresponding to
heat conductivity function has been found. The heat diffusion
equation is solved in the volume of He I under the assumption that
the main contribution to the specific heat is due to helium and the
main contribution to longitudinal conduction is due to supercon-
ductor. Since He I–He II phase transition is not characterised by
any latent heat (phase transition of the second kind according to
the Ehrenfest classification [11]), the condition of equal heat fluxes
on both sides of lambda front is satisfied. For one dimensional
problem with the temperatures clamped at both extremities of
the channel the closed form analytical solutions for temperature
profile are obtained. Channels with discontinuity in diameter are
also analysed. Experimental validation of the model based on
54 m long superconducting lines, applied in the LHC to power
the corrector magnets is included [12,13].

2. Heat transport in narrow channels of constant diameter

Heat transport in a long, narrow channel of constant diameter is
illustrated in Fig. 1. The channel is filled with He II and He I in the
range of temperatures from T0 to Tk and from Tk to Tend, respec-
tively. It is assumed that lambda front moves along the channel
at a speed v. Furthermore, it is assumed that both He I and He II
are in quasi-steady state, heat transport in superfluid helium is tur-
bulent (above the critical heat flux _qc) and there is no radial heat
transfer across the wall. Thus, one-dimensional model of heat
transfer is considered. The use of 1D model is justified when mod-
elling heat transport in long channels of small diameter when com-
pared to its length.

To describe heat transport in He II, the Gorter–Mellink equation
in its 1D version is used:

_q3dx ¼ f ðTÞdT ð3Þ

where _q denotes the heat flux, dT is the temperature increment on
the length dx and f ðTÞ is the heat conductivity function (Fig. 2).

For a given position xk of the lambda front in the channel and
boundary temperatures T0 and Tk one obtains due to separation
of variables:Z xk

0

_q3dx ¼
Z Tk

T0

f ðTÞdT ð4Þ

Assuming that the cross-section of the channel is constant, the
above equation can be simplified to the following form:

_qðxkÞ ¼
R Tk

T0
f ðTÞdT

xk

" #1
3

ð5Þ

Here, the assumption of equal heat flux in every superfluid section
of the channel has been made [9]. In view of the above equation, it
turns out that the value of the heat flux in a tube of constant diam-
eter depends inversely on the cubic root of the lambda front posi-
tion (Fig. 3):



Fig. 3. Heat flux as a function of xk in channel of constant diameter.
Fig. 5. Velocity of lambda front as a function of its position.
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_qðxkÞ ¼
C
xk

� �1
3

¼
eCffiffiffiffiffi
xk

3
p ð6Þ

where C denotes the integrated conductivity function and is a con-
stant value.

If the heat flux is known, the velocity of the lambda front can be
determined by using the amount of energy extracted from He I:

dQ ¼ m � cp � dT ð7Þ

Integrating Eq. (7) from Tk to Tend one obtains the amount of heat
which is transported from He I to He II in the course of the phase
transformation process.

DQ ¼
Z Tend

Tk

m � cpðTÞ � dT ð8Þ

The mass of helium can be expressed as volume multiplied by den-
sity, so that:

DQ ¼ S � Dx
Z Tend

Tk

qðTÞ � cpðTÞ � dT ð9Þ

The evolution of lambda front is illustrated in Fig. 4. For the time
period Dt ¼ t2 � t1 lambda front moves by Dx and the heat is ex-
tracted from the volume S � Dx, where S is the cross-section area
of the channel. It is worth pointing out that the motion of the lamb-
da front is strongly justified by the second order phase transition,
where both phases cannot coexist in thermodynamic equilibrium.

Transport of energy across the lambda front can be expressed in
the following way:

Dq
Dt
¼ Dx

Dt

Z Tend

Tk

qHe IðTÞ � cpHe IðTÞ � dT ð10Þ

where Dq ¼ DQ
S .

When the time interval is sufficiently small Dt ! dt, the heat
flux can be approximately calculated as follows:

dq
dt
¼ dx

dt

Z Tend

Tk

qHe IðTÞ � cpHe IðTÞ � dT ð11Þ

Here, a simplified assumption of temperature distribution reaching
Tend over the distance of Dx in He I has been made. Given very steep
increase of temperature in He I in the proximity of k transition, the
above assumption is not far from reality.
Fig. 4. Lambda front propagation.
Finally, the following approximate formula for lambda front
velocity is obtained.

vðxkÞ ¼
_qðxkÞR Tend

Tk
qHe IðTÞ � cpHe IðTÞ � dT

ð12Þ

As the heat flux transported across the lambda front is inversely
proportional to the cubic root of lambda front position (Eq. (6))
and the integral in denominator of Eq. (12) is constant, the front
velocity decays in a similar way like the flux (Fig. 5).

Knowing the velocity of lambda front propagation, the time of
subcooling can be derived as:

t ¼
Z L

0

dx
vðxkÞ

ð13Þ

where L denotes the length of the channel.

3. Temperature profiles on either side of phase transformation
front

3.1. Temperature profile in He II

In order to determine temperature profile in He II, a channel of
constant diameter and length L, cooled at one end by infinite res-
ervoir of helium bath of constant temperature T0 < Tk is consid-
ered (Fig. 4). The relationship between temperature and distance
can be derived from Gorter–Mellink law (3), assuming steady-state
heat transport and constant heat flux along the channel [9]. This
assumption is true for lambda front located already far enough
from the beginning of the channel.

xðTÞ ¼
R T

T0
f ðgÞdg
_q3

He II

ð14Þ

An example of temperature profile in the channel filled with He II
with boundary temperatures T0 ¼ 1:9K and Tk ¼ 2:17K is shown
in Fig. 6.
Fig. 6. Temperature profile in superfluid helium (below Tk).
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3.2. Temperature profile in He I

The temperature profile in He I is obtained for concentric con-
figuration of superconductor located in the middle of long, narrow
channel filled with liquid helium, as illustrated in Fig. 7. Heat
transfer in He I and in the cable can be written in the form of sec-
ond order differential equation:

½ðqcpAÞHe I þ ðqcpAÞCu�
oT
ot
¼ ½ðkAÞHe I þ ðkAÞCu�

o2T
ox2 ð15Þ

Here, perfect heat transport between superconductor and helium in
the radial direction has been assumed. The specific heat of copper is
small when compared to helium as well as the conductivity of he-
lium is insignificant when compared to copper. Omitting small
terms, the Eq. (15) can be simplified to the following form:

oT
ot
¼ D

o2T
ox2 ð16Þ

where D ¼ ðkAÞCu
ðqcpAÞHe I

is a combined thermal diffusivity and—for the

sake of simplicity—is assumed to be constant in the range of tem-
peratures from Tk to Tend.

As the problem is spacio-temporary, a plane wave approach
based on the suitable change of variables is applied. The change
of variables takes the form known in the problem of ablation:
n ¼ x� vt. New variable makes it easier to analyse the heat trans-
port problem assuming that the beginning of coordinate system
moves together with lambda front. Thus, Eq. (16) transforms into:

oT
ot
¼ D

o2T

on2 � vðtÞ oT
on

ð17Þ

The heat diffusion Eq. (17) can be solved by applying the method of
separation of variables. The general solution is then expressed as a
product of a function of n and a function of t with additional constant
value Tend which denotes the temperature at the end of the channel:

Tðn; tÞ ¼ UðtÞWðnÞ þ Tend ð18Þ

Differentiating the functions UðtÞ and WðnÞ and inserting them into
Eq. (17) one obtains:

W
oU
ot
¼ DU

o2W

on2 � vðtÞU oW
on

ð19Þ

In order to simplify the solution, the assumption of constant veloc-
ity v of the lambda front is made. This assumption is justified when
lambda front is already far enough from the beginning of the chan-
nel (Fig. 5, flat part of the curve vðxÞ). The final form of the heat dif-
fusion equation can be written as follows:

1
DU

oU
ot
¼ 1

W
o2W

on2 �
v

DW
oW
on

ð20Þ

Since the left hand side of Eq. (20) is function of t alone and the right
hand side is function of n alone, the only possible solution implies
that they are both equal to a separation constant k2. Thus:

1
DU

oU
ot
¼ �k2 ð21Þ

1
W

o2W

on2 �
v

DW
oW
on
¼ �k2 ð22Þ
Fig. 7. Cable-in-conduit problem.
Eq. (21) is in fact the first-order ordinary differential equation. It can
be solved by integrating both sides of the equation.

dU
U
¼ �k2Ddt ð23Þ

The general solution of Eq. (23) reads:

UðtÞ ¼ C1e�Dk2t ð24Þ

Eq. (22) is a linear homogeneous second order differential equation:

o2W

on2 þ
v
D

oW
on
þ k2W ¼ 0 ð25Þ

The solution of (25) can be assumed in the form of exponential
function:

W ¼ ekn ð26Þ

Inserting the solution (26) into Eq. (25) one obtains:

eknðk2 þ v
D

kþ k2Þ ¼ 0 ð27Þ

A non-trivial, real solution of Eq. (27) exists if D ¼ ðvD Þ
2 � 4k2 P 0.

Then, the general solution of Eq. (22) takes the form:

WðnÞ ¼ C2ek1n þ C3ek2n ð28Þ

where:

k1 ¼
�vþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 4D2k2

p
2D

ð29Þ

k2 ¼
�v�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � 4D2k2

p
2D

ð30Þ

Finally, referring back to Eq. (18) one obtains the general solution:

Tðn; tÞ ¼ e�Dk2t � ðAek1n þ Bek2nÞ þ Tend ð31Þ

where: A ¼ C1 � C2 and B ¼ C1 � C3.
The values of A and B can be calculated by applying the follow-

ing boundary conditions:

Tðn! 0Þ ¼ Tk ð32Þ
oT
on
ðn! 0Þ ¼ AHe II

ACukCu
_qk ð33Þ

Finally, one obtains:

A ¼ ½ðTend � TkÞk2 þ eD _qk�eDk2t

k1 � k2
ð34Þ

B ¼ ½ðTend � TkÞ �
ðTend � TkÞk2 þ eD _qk

k1 � k2
�eDk2t ð35Þ

where eD ¼ AHe II
ACukCu

. By inserting A and B into Eq. (31), the expression
for temperature profile in He I region is obtained:

Tðn; tÞ ¼ Tend þ
Tend � Tk

k1 � k2
ðk2ek1n � k1ek2nÞ þ

eD _qk

k1 � k2
ðek1n � ek2nÞ

ð36Þ

The temperature profile in the proximity of lambda transition is
illustrated in Fig. 8.
4. Channels containing bifurcation or discontinuity in diameter

In order to model a channel with one discontinuity in diameter
(Fig. 9) the assumption of energy conservation has to be made.
Thus, the heat flux multiplied by the area of cross-section is as-
sumed to be constant along the channel. According to the energy
conservation law:



Fig. 9. Tube filled with liquid helium with discontinuity of diameter.

Fig. 10. Velocity of lambda front in the channel with discontinuity in diameter.

Fig. 11. Channel with bifurcation filled with liquid helium.

Fig. 8. Temperature profile in the channel containing copper cable.
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_q1S1 ¼ _q2S2 ð37Þ

Now, Eq. (1) can be applied to both parts of the channel shown in
Fig. 9:

_q1ðxkÞ ¼
R Ta

T0
f ðTÞdT

a

" #1
3

and _q2ðxkÞ ¼
R Tk

Ta
f ðTÞdT

xk � a

" #1
3

ð38Þ

where a is the length of the left hand portion of the channel with
respect to the change of the diameter and Ta denotes the tempera-
ture at the cross-sectional discontinuity.

Transforming Eqs. (37) and (38), one obtains the equation rep-
resenting heat flux in the channel beyond the discontinuity:

_q2ðxkÞ ¼
1
S2

R Tk

T0
f ðTÞdT

a
S3

1
� xk�a

S3
2

24 351
3

ð39Þ

The above equation can be generalised [15] to the case with multi-
ple changes of diameter along the channel as follows:

_q1S1 ¼ . . . ¼ _qNSN ð40Þ

_qNðxkÞ ¼
1
SN

R Tk

T0
f ðTÞdTPN�1

i¼1
li
S3

i
� xk�

PN�1

i¼1
li

S3
N

2664
3775

1
3

ð41Þ

where N is the number of discontinuities and li is the length of sec-
tions between discontinuities.

The velocity of lambda front is calculated similarly as in the
model of constant diameter according to Eq. (12). However,
sudden increase of velocity is observed when lambda front
passes the point of diameter change (continuous line in
Fig. 10).

It is worth pointing out that the change of the section from
wider to narrower increases the velocity, while in the opposite sit-
uation the velocity decreases.

The bifurcation corresponds to ‘‘T” shaped connection (Fig. 11).
The solution is trivial when the diameters d1 and d2 are equal. It be-
comes more complex when the diameters are different.

Once again, according to energy conservation law one obtains:

_q0S0 ¼ _q1S1 þ _q2S2 ð42Þ
where the heat fluxes are expressed by:

_q0 ¼
R Tmid

T0
f ðTÞdT

x0

" #1
3

ð43Þ

_q1 ¼
R Tk

Tmid
f ðTÞdT

x1

" #1
3

; _q2 ¼
R Tk

Tmid
f ðTÞdT

x2

" #1
3

ð44Þ

Modifying the Eqs. (42)–(44) one obtains:

_q1ðxkÞ ¼ _q2ðxkÞ ¼
1

S1 þ S2

R Tk

T0
f ðTÞdT

x0

S3
0
þ xk�x0

ðS1þS2Þ3

24 351
3

ð45Þ

Because _q1ðxkÞ and _q2ðxkÞ are equal, the position of lambda fronts on
both sides of the bifurcation are the same.

5. Experimental validation

To verify the analytical model of heat transport and He I–He II
phase transformation rate the measurements have been carried
out by means of an experimental setup. The setup was built as a
full scale model of superconducting line used to power the correc-
tor magnets in the LHC [12,13]. The superconducting line consti-
tuted a 50 mm ID tube, composed of 2 segments, each 54 m long,
attached to the superconducting magnets and cooled at one
extremity via a direct link to the bulk of He II. The line is illustrated
in Fig. 12.

The process of subcooling (cooling from 4.5 to 1.9 K) the chan-
nel containing superconductors was computed by using the equa-
tions suitable for multiple changes of diameter. The parameters
used in the modelling were lengths of channel portions and the
cross-section areas.

In the first part of experiment, the superconducting line was
connected to the magnets by inlet channel. The magnets formed
a suitable large source of bulk He II. At the opposite extremity of
the line a polyethylene insert was installed, which considerably
reduced the helium cross-section area. Lambda front travelled
from inlet channel along the superconducting line.



Fig. 12. Superconducting line configuration in the first part of the experiment.
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A comparison of calculated and measured subcooling times for
the superconducting line during first part of the experiment is
shown in Table 1. The possible reason of discrepancy between
measurements and calculations may be related to the lack of tem-
perature sensor at the extremity of the 2nd half-cell. The measured
values were obtained by extrapolation based on the mean velocity
of lambda front in the magnets.

In lambda second part of experiment (Fig. 13) two additional
channels connecting superconducting line with magnets were in-
stalled in order to increase the inlet helium cross-section. The in-
Table 1
Superconducting line experiment – comparison of measurements and computations

Time of subcooling Measurements [h] Computations [h]

Part I
1st half cell 3.1 3.5
2nd half cell 5.5 4.3

Part II
1st half cell 1.9 3.1
2nd half cell

1st front 3.7 3.4
2nd front 11.5 10.9
1st and 2nd front 2.2 2.4

Fig. 13. Superconducting line configuration

Fig. 14. Model of superconducting line in
sert was removed and the superconducting line had constant
cross-section area apart from the inlet channels. In addition, a cop-
per barrier extracting heat from the line to the magnets was in-
stalled at the extremity of the experimental cell to accelerate the
subcooling process. Thus, the lambda front was initiated not only
via the inlet channels but also via the copper barrier.

The model of the superconducting line subcooled by two
lambda fronts is shown in Fig. 14.

The comparison of measured and computed subcooling times
for superconducting line during the second part of experiment is
shown in Table 1. Three scenarios were considered: lambda front
produced by inlet channels (1st lambda front), lambda front pro-
duced by the copper barrier (2nd lambda front), simultaneous sub-
cooling by both lambda fronts.

The possible reason of discrepancy in the results, just like in the
first part of experiment, may be the lack of suitable temperature
sensor at the extremity of the line.

The process of subcooling of superconducting line after quench
(resistive transition in magnets) is shown in Fig. 15.

Here, a suitable number of thermometers has been installed.
Travelling lambda front can be easily observed in the window
shown in Fig. 15 (temperature drops).
in the second part of the experiment.

the second part of the experiment.



Fig. 15. Temperature profiles during quench recovery in the superconducting line.

Fig. 16. Superconducting line in front of magnet interconnections (CERN).
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6. Application in superconducting particle accelerators

The current model of He I–He II travelling phase transition front
has been derived in view of multiple applications in the process of
subcooling modern particle accelerators equipped with supercon-
ducting magnets. Apart from main magnetic components (dipoles
and quadrupoles) these rather complicated machines integrate a
sophisticated array of correctors (higher order multipoles) that
are often powered via specific auxiliary bus-bar channels
(Fig. 16), located next to the main cold mass in the continuous
cryostat. Such layout of cryogenic components yields a need to
optimise the subcooling process in view of fast cool-down from
room temperature to below Tk and in view of fast quench recovery
after resistive transition in a portion of the accelerator. Such ap-
proach has been applied in the LHC in order to minimize time of
subcooling of the superconducting line, both in the main arc and
in the arc extremities (dispersion suppressors). In the process of
parametric optimisation of topology of the superconducting line
the cross-section of main channel and the cross-section of a peri-
odic link to the source of He II (main magnets) were taken into ac-
count. For many reasons, related mainly to space constraints, these
cross-sections were limited to the values not necessarily conve-
nient from the thermodynamic point of view. In addition, the avail-
able free cross-section of He II in the main channel was mostly
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limited by the amount of superconductor and polyethylene inserts,
variable as a function of the accelerator sector. In order to speed up
the process of initial cool-down or the process of quench recovery,
special copper membranes playing role of heat exchangers were
designed and located in some parts of the machine [16]. Thanks
to this solution a number of lambda front sources were created
in the superconducting line which considerably reduced its time
of subcooling. In all these cases the model derived in the present
paper—even if simplified—turned out particularly useful. In most
of the cases the mathematically predicted additional time for sub-
cooling the superconducting line did not exceed some 2 h, when
compared to main cold mass (dipole and quadrupole magnets).
The authors strongly believe that the current model constitutes a
useful analytical tool for fast design process of narrow cryogenic
channels containing superconductors needed to power specific
accelerator systems.

7. Conclusions

Heat transport in long, narrow channels containing supercon-
ductors and filled with liquid helium has been investigated by
means of analytical approach. It is worth pointing out, that even
1D problem of heat diffusion across lambda transition (front) mov-
ing along a narrow channel is rather complicated from the point of
view of mathematical description. In order to obtain closed form
solutions for the heat flux, lambda front propagation rate and the
temperature profile in the channel a number of simplifications
has to be made. As the solution of the above mentioned problem
is based on the travelling plane wave description with suitable
change of variables, it is possible to reduce the equations to qua-
si-stationary version. However, in order to simplify the transfor-
mation of variables a constant propagation rate for the lambda
front has to be assumed. This assumption implies the position of
lambda front already far enough from the beginning of the channel.
Therefore, the solution presented in the paper corresponds to the
flat part of the curve: velocity versus distance. It is worth pointing
out, that closed form solution for the temperature profile in He I
and in He II has been obtained, which constitutes a step forward
when compared to previous publications in this domain [10].

Another observation has been made for channels with disconti-
nuity in diameter. As soon as lambda front reaches a reduction in
diameter of the channel, its velocity considerably increases and
the process of velocity decay as a function of distance is delayed
when compared to the channel of constant diameter. Both in the
case of channel of constant diameter and in the case of variable
cross-section the velocity decays to zero for the length of channel
tending to infinity.

Experimental validation of 1-D model presented in the paper is
based on 2 � 54 m long experimental superconducting line,
applied in the LHC to power the corrector magnets [12,13]. The
measurements of lambda front propagation rate, carried out during
the process of subcooling the channel containing superconductors,
converged reasonably well with the analysis carried out by using
the model. This is certainly a good indication of validity of the
model.

Finally, it is worth pointing out that the model is attractive and
useful in the design of cryogenic systems containing He II and sub-
jected to variations of temperature related to temporary heat pro-
duction sources like superconducting coils. After resistive
transition (quench) the system has to be subcooled back to below
Tk and time of this operation has to be minimised. The model pro-
vides an efficient tool for the so-called ‘‘quench recovery” optimi-
sation process.
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[15] G. Ottaviani, B. Skoczeń J.R. Thome, Modelisation et analyse du

refroidessement des busbars supraconducteurs alimentant les aimants
correcteurs du LHC, Diploma Thesis, Ecole Polytechnique Federale de
Lausanne/CERN, 2004.
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